Deter mination of Antenna Radiation Fields
Using Potential Functions

Sources of Antenna J - vector eectric current density (A/m?)

-

Radiation Fields M - vector magnetic current density (V/m?)
Some problems involving electric currents can be cast in equivalent forms

Involving magnetic currents (the use of magnetic currents is simply a
mathematical tool, they have never been proven to exist).

Direct solution of

Maxwell’s equations Radiation
. difficult integrati :
Sources (difficult integration) > Ficlds
I M E.H
Determination of potentials Determination of fields
(simplified integration) (differentiation)
Vector
Potentials
A, F

A - magnetic vector potential (dueto J)
F - electric vector potential (dueto M)

In order to account for both eectric current and/or magnetic current
sources, the symmetric form of Maxwell’s equations must be utilized to
determinetheresulting radiationfields. Thesymmetricform of Maxwell’s
equationsinclude additional radiation sources (electric charge density - p
and magnetic charge density p,). However, these charges can always be
related directly to the current via conservation of charge equations.



Maxwell’ s equations (symmetric, time-harmonic form)

VXE=-jwoB-M (Faraday’s law)
VxH=joD +J (Ampere s law)
V-D=p (Gauss’ law - electric fields)
V-B=p, (Gauss’ law - magnetic fields)

Theuseof potentialsin the solution of radiation fields employsthe concept
of superposition of fields.

Electric current _,  Magnetic vector _, Radiation fields
source (J, p) potential (A) (Ep Hp

Magnetic current _,  Electric vector _, Radiation fields
source (M, p,,) potential (F) (Eg, Hp)

The total radiation fields (E, H) are the sum of the fields due to electric
currents (E,, H ,) and the fields due to the magnetic currents (E¢, H;).

E=E +E,
H=H,+H,

Maxwell’ s Equations (electric sources only = F = 0)
VXE,=-jwB, (1a)

VxH =joD +J (1b)
V-D,=p (1c)

V-B,=0 (1d)



Maxwell’ s Equations (magnetic sources only = A = 0)

VXE,=joB,-M (2a)

VxHp=jwDg (2b)
VD=0 (2¢)
V:B.=p, (2d)

Based on the vector identity,
V- (VxG)=0 (for any vector G)

any vector with zero divergence (rotational or solenoidal field) can be
expressed asthecurl of someother vector. From Maxwell’ sequationswith
electric or magnetic sources only [Equations (1d) and (2c)], we find

V:B,=0 VD=0
so that we may define these vectors as

B,-VxA (3a) D,=-VxF (3b)

where A and F arethe magnetic and el ectric vector potentials, respectively.
The flux density definitions in Equations (3a) and (3b) lead to the
following field definitions:

H,-1vxda (4 EF:—éVXF (4b)

K

Inserting (3a) into (1a) and (3b) into (2b) yields

VXE, = jo(VxA) (5a) VxHp=-jo(VxF) (5b)



Equations (5a) and (5b) can be rewritten as
V x [EA +ij] =0 (6a) Vx [HF +j<oF] =0  (6b)

Based on the vector identity

Vx(Vg)=0 (for any scalar g)

the bracketed termsin (6a) and (6b) represent non-solenoidal (lamellar or
irrotational fields) and may each be written asthe gradient of some scalar

E +jwA=-V, (7a) H,+joF=-V¢_ (7b)

where ¢, is the eectric scalar potential and ¢,,, is the magnetic scalar
potential. Solving equations (7a) and (7b) for the electric and magnetic
fieldsyields

E,=-joA-Vd, (8a) H,=-joF-Vd_  (8b)

Equations (4a) and (8a) give the fields (E,, H,) due to eectric sources
while Equations (4b) and (8b) give the fields (Eg, Hy) due to magnetic
sources. Notethat these radiated fields are obtained by differentiating the
respective vector and scalar potentials.

The integrals which define the vector and scalar potential can be
found by first taking the curl of both sides of Equations (4a) and (4b):

VxH,=1VxVx4 (9a) VxE,=-_VxVxF (9b)
€

"

According to the vector identity
VxVxG=V(V:-G)-V?G  (vector identity)

and Equations (1b) and (2a), we find



V(V-A)-V*A=jopeE  +pJ  (10a)
V(V-F)-V*F=jopeH_.-eM  (10b)
Ir_lserti ng Equations (7a) and (7b) into (10a) and (10b), respectively
gives
VPA+k*A=V(V-A)+V(joped)-pJ  (lla)
VPF+k*F=V(V-F)+V(joped )-eM  (11b)

We have defined the rotational (curl) properties of the magnetic and
electric vector potentials[ Equations(3a) and (3b)] but havenot yet defined
theirrotational (divergence) properties. If we choose

V-A=-joped, (12a)

V-F=-joped, (12b)
Then, Equations (11a) and (11b) reduceto

VA +k*A=-pJ  (13a)

VIF+k*F=-eM  (13b)

The relationship chosen for the vector and scalar potentials defined in
Equations (12a) and (12b) is defined as the Lorentz gauge [other choices
for theserelationshipsarepossible]. Equations(13a) and (13b) aredefined
as inhomogenous Helmholtz vector wave equations which have solutions
of the form

A(r)— ff sy e iy (14a)

lr-r']

F(r) = ff V() P T (14b)

|7 - rl



wherer locatesthefield point (wherethefield is measured) and r’ locates
the source point (where the current is located). Similar inhomogeneous

Helmholtz scalar wave equations can be found for the eectric and
magnetic scalar potentials.

Vo +k2p,=-F (152
€

Vi, +k*d, = - P (15b)
M

The solutions to the scalar potential equations are

k|r-r'|
b r )——ff p(r/)j’ ' ae)
r-r
k| r- r|
¢(r)——fffp</>e|’ (16b)
! I'
J(r'), M(r") A(r). F(r)
ﬂ rop'
dv’
r




Deter mination of Radiation Fields Using Potentials- Summary

A(r)_—ff J(r/)e —Jk|r- r|dv/

[r-r|

E, =-jwA-Vo,

- —joAd- I V(V-A)
WHE

0l A+ LV(V-A)

H, =—-VxA

-jk|r-r’|

F(r)——fffM(r/) P av’

WUE
= -jo| F+ iV(V-F)
k2
1
E,--~VxF



Notice in the previous set equations for the radiated fields in terms of
potentials that the equations for E, and H- both contain a complex
differentiation involving the gradient and divergence operators. In order
to avoid this complex differentiation, we may alternatively determine E,
and H; directly from Maxwell’s equations once E; and H, have been
determined using potentials. From Maxwell’s equations for electric
currents and magnetic currents, we have

VxH  =joD +J (1)
VXEp=-joB,-M (2)

In antenna problems, the regions where we want to determine the radiated
fields are away from the sources. Thus, we may set J = 0 in Equation (1)
to solvefor E, and set M = 0 in Equation (2) to solvefor H.. Thisyields

1 1
E,=— VxH, H,--— VxE,

joe Jjou

Thetotal fields by superposition are
E=E, +E, H=H,+H,_

which gives

E=E, +E =-joAd- I v(v-4)- LvxF
WHE €
_;V H —LVxF
jwe €




Antenna Far Fieldsin Terms of Potentials

As shown previously, the magnetic vector potential and eectric
vector potentials are defined as integrals of the (antenna) electric or

magnetic current density.

g ~JkIr- r’|
A(r)__ff Jr)ys—— P dv’

o JkIr- rl
F(r)——ff Mr)S— P r|

If we are interested in determining the antenna far fields, then we must
determine the potentials in the far field. We will find that the integrals
defining the potentialssimplify in thefar field. Inthefar field, the vectors

randr -r’ becomes nearly paralldl.

J(r'"), M(r')
/ 2 r-r

v
z “.‘
r ,
O & o
4//7y r=ra,
j\ r=ra
X r'cosc r

lr-7'| ~r-r'cosa (1)



Using the approximation in (1) in the appropriate terms of the potential
integrals yields

_ _ s ]
jk|r-r'| e ]kre]kr cosa

g (2)

lr -7 r - r’cosa

e

If we assume that r >> (r )., then the denominator of (2) may be
simplified to give

_ _ s ]
jk|r-r'| e ]kre]kr cosa

g 3)

jr-7| r

e

Note that ther ” term in the numerator complex exponential term in (3)
cannot be neglected since it represents a phase shift term that may still be
significant even in the far field. The r-dependent terms can be brought
outside the integral since the potential integrals are integrated over the
source (primed) coordinates. Thus, the far field integrals defining the
potentials become

—jkr oy
A ~ e J N , Jkr'cosa d /
(r) u4mf£ (r'ye v (4)
e ¥ N Jkr! /
F ~ M Jkr'cose g
(r)= € . f{ (r')e \Y (5)

The potentials have theform of spherical waves aswe would expect in the
far field of the antenna. Also note that the complete r-dependence of the
potentials is given outside the integrals. The r’ term in the potential
Integrands can be expressed in terms of whatever coordinate system best
fits the geometry of the source current. Spherical coordinates should
aways be used for the field coordinates in the far field based on the
spherical symmetry of the far fields.

r-r =rr/cosa

/

rer xx'+yy+zz/

r’coso =

r r



Rectangular coordinate source

(field) (x,y,z) = (rsinBOcosd, 7sinOsind, 7 cosO )
(source)  (x'.y'.z")

/ / /
xx '+ +zZ
r'coso = 144

= (x'cosd +y’sin¢)sind + z’cosO
.

Cylindrical coordinate source

(field) (x,y,z) = (rsinOcosd, rsinOsind, 7cosO )

(source)  (x',y',z") = (p’cosd’, p’sind’,z")

/ / /
rlcose = XX TV TZZ - 5isinBcos(d - d') + z/cosd
r

Spherical coordinate source

(field) (x,y,z) = (rsinOcosd, 7sinOsing, 7cosO )

(source)  (x’,y’.z") = (r'sin® cosd’,r’sin0’sind’, 7 'cosd’)

/v 4 o/ o
rlcose = 22 X TZ 1 /1c0s0c0sO’ + sinOsin® cos(d - ¢)]
r

The results of the far field potential integrations in Equations (4) and (5)
may be written as

-jkr

Ar) = £ [4,0,0)a, + 440,0)aq + 4,0, 0)a, ]
-jkr

F(r)= £ [F(8,0)a, + Fo(®,0)ay + Fy(6,d)a, ]

7



The éectric field due to an eectric current source (E,) and the magnetic
field due to a magnetic current source (H;) are defined by

E,=-jwA - J V(V-4
A~ "J ope ( ) (6)
_ J
H,=-joF - V(V-F
F-"J ope ( ) (7)

If weexpand thedifferential operatorsin Equations(6) and (7) in spherical
coordinates, given the known r-dependence, we find that the a,-dependent
terms cancel and all of the other terms produced by thisdifferentiation are
of dependencer 2 or lower. Thesefield contributions are much smaller in
thefar field than the contributionsfrom thefirst termsin Equations(6) and
(7) which vary as r*. Thus, in the far field, E, and H- may be
approximated as

EAz—jw(Aeae+A¢a¢) (8)

HFz—jw(Feae+F¢a¢) (9)

The corresponding components of the fields (H, and E;) can be found
using the basi ¢ plane wave rel ationshi p between the e ectric and magnetic
field in the far field of the antenna. Since the radiated far field must
behave like a outward propagating spherical wave which looks essentially
like a plane wave as r ~«, the far field components of H, and E; are
related to the far field components of E, and H¢ by

E'Arz 0 HFrzO
. : Erg
E,g= —]wAeanA¢ HF¢z —]ooFd):T
: : EF¢
EA¢ ~ —]wA¢ = -NH, Hy~ joFy=-——2



Solving the previous equations for the individual componentsof H, and
Ec yieds

HArzO EFrzO
. -k : -k
HAez]=A¢ =]=A¢ EFBz—]wnFq): —]=F¢
N B €
. -k : -k
HA¢ ~ _J;Ae = _]EAB EF¢ ~jwnF, :]EFG

Thus, once the far field potential integral is evaluated, the corresponding
far field can be found using the simple algebraic formulas above (the
differentiation has already been performed).



Duality

Duality - If the equations governing two different phenomena are
Identical in mathematical form, then the solutions also take on the same

mathematical form (dual quantities).

Dual Equations

Electric Sources

VxH  =jweE  +J
VXE , =-jopH,
%! +k2A=—pJ

o Jklr-r!

I

1
H,=-VxA4

"

E,=-jwA - V(V-A4)

WUE
Vo, + k2, = _P
€

1
JWPE

b, = - V-A

-jk|r-r’

1 |
1] Srentd

H.=-joF -

Magnetic Sources

-VXEp=jopH,+M
VXHp=jweE,
VF +k*F = -eM

o Jklr-r!

P I

1

E,=-~VxF
F €

V(V-F)
WHE

V4, k2, = -
v

b,=-——V'F
JwUE

]k|r r’

b [ fo



Dual Quantities

Electric Sources Magnetic Sources
EA HF
H, “Ep

J M
A F
Y P
b, b,
€ H
K €
k k
4 1/7
1/ N



Reciprocity

Consider two sets of sources defined by (J, , M,) within the volume
V,and (J,, M,) withinthevolumeV, radiating at the samefrequency. The
sources (J, , M) radiate the fields (E, , H,) while the sources (J, , M,)
radiatethefields (E, , H,). The sources are assumed to be of finite extent
and the region between the antennasis assumed to beisotropic and linear.
We may write two separate sets of Maxwell’ s equationsfor the two sets of
Sources.

E.H,
V,
EbaHb
4z
VxH =jweE_ +J, 6 (la) VxH,=jweE, +J, (1b)
-VxXE_ =jopH, +M, (2a) -VxE,=jopH, +M, (2b)
If we dot (1a) with E,, and dot (2b) with H,, we find
E,-(VXH,)=jweE E, +J E, (3a)

-H -(VXE,)=jopH, -H,+H_ M, (3b)
Adding Equations (3a) and (3b) yields
E,-(VxH,)-H_ -(VXE),)

=jweE E, +J E,+jouH H, +H M,



Thepreviousequation may berewritten using thefollowing vector identity.
V:(AxB)=B:-(VxA)-A-(VxB) (vector identity)
which gives
-V-(E,*xH,)
=jweE E,+J E,+jopH -H,+H_ -M, (4a)

If we dot (1b) with E, and dot (2a) with H,, and perform the same
operations, then we find

-V-(E_ xH,)
=jweE,-E_+J,-E +jopH,-H +H,-M,6 (4b)
Subtracting (4a) from (4b) gives
-V-(E,xH,-E,xH )
-E,-J,~H,-M-E,-J -H, M, (5)

If we integrate both sides of Equation (5) throughout all space and apply
the divergence theorem to the left hand side, then

_ff(Eabe_beHa)'ds
s
= [[[(E, Iy +H, M -E,-J, ~H,M,)dv ©)
V

The surface on the left hand side of Equation (6) is a sphere of infinite
radius on which theradiated fields approach zero. ThevolumeV includes
al space. Therefore, we may write

[[[Ea Ty Ho My = [[[(E, T, - Hy M)dv ()
4 v



Note that the left hand side of the previousintegral dependson the“b” set
of sources while the right hand side depends on the “a” set of sources.
Since we have limited the sources to the volumes V, and V,,, we may limit
the volume integralsin (7) to the respective source volumes so that

[[[Eady-H Mdv=[[[(E, T,-H, - M)dv (@)
Vy v,

Equation (8) represents the general form of the reciprocity theorem.

We may use the reciprocity theorem to analyze a transmitting-
recelving antennasystem. Consider the antenna system shown below. For
mathematical simplicity, let’s assume that the antennas are perfectly-
conducting, eectrically short dipole antennas.

Antenna a Antenna b Vi

A

Thesourceintegralsinthegeneral 3-D reciprocity theorem of Equation (8)
simplify to lineintegrals for the case of wire antennas.

fEb°Iadl/:fEa~Ibdl/
L L

a b

Furthermore, the electric field along the perfectly conducting wireis zero
so that the integration can be reduced to the antenna terminals (gaps).



fEb°Iadl’:fEa-Ibdl’

g, &y

If we further assume that the antenna current is uniform over the
electrically short dipole antennas, then

IafEb-dl’zlbea'dl’

g, &

Thelineintegral of the electric field transmitted by the opposite antenna
over the antennaterminal givestheresulting induced open circuit voltage.

LV, =LV,

If we write the two port equations for the antenna system, we find
Va=Zoada ¥ ZapTy
Ve =Zyady = Zip 1y

Notethat theimpedances Z,, and Z,, have been shown to beequal fromthe
reciprocity theorem.

14

7z =_b%
ba la




Therefore, if we place a current source on antenna a and measure the
response at antenna b, then switch the current source to antenna b and
measure the response at antenna a, we find the same response (magnitude
and phase). Also, sincethetransfer impedances (Z,,and Z,,) areidentical,
thetransmit and recel ve patternsof agiven antennaareidentical. Thus, we
may measurethe pattern of agiven antennain either thetransmitting mode
or receiving mode, whichever is more convenient.



