
Determination of Antenna Radiation Fields
Using Potential Functions

� J - vector electric current density (A/m2)
M - vector magnetic current density (V/m2)

Some problems involving electric currents can be cast in equivalent forms
involving magnetic currents (the use of magnetic currents is simply a
mathematical tool, they have never been proven to exist).

A - magnetic vector potential (due to J)
F - electric vector potential (due to M)

In order to account for both electric current and/or magnetic current
sources, the symmetric form of Maxwell’s equations must be utilized to
determine the resulting radiation fields.  The symmetric form of Maxwell’s
equations include additional radiation sources (electric charge density - �
and magnetic charge density �m).  However, these charges can always be
related directly to the current via conservation of charge equations.

Sources of Antenna
Radiation Fields



Maxwell’s equations (symmetric, time-harmonic form)

The use of potentials in the solution of radiation fields employs the concept
of superposition of fields.

Electric current
�

Magnetic vector
�

Radiation fields
  source (J, �)    potential (A)      (EA, HA)

Magnetic current
�

Electric vector
�

Radiation fields
  source (M, �m)  potential (F)      (EF, HF)

The total radiation fields (E, H) are the sum of the fields due to electric
currents (EA, HA) and the fields due to the magnetic currents (EF, HF).

Maxwell’s Equations (electric sources only � F = 0)



Maxwell’s Equations (magnetic sources only � A = 0)

Based on the vector identity,

any vector with zero divergence (rotational or solenoidal field) can be
expressed as the curl of some other vector.  From Maxwell’s equations with
electric or magnetic sources only [Equations (1d) and (2c)], we find

so that we may define these vectors as

where A and F are the magnetic and electric vector potentials, respectively.
The flux density definitions in Equations (3a) and (3b) lead to the
following field definitions:

Inserting (3a) into (1a) and (3b) into (2b) yields



Equations (5a) and (5b) can be rewritten as

Based on the vector identity

the bracketed terms in (6a) and (6b) represent non-solenoidal (lamellar or
irrotational  fields) and may each be written as the gradient of some scalar

where �e is the electric scalar potential and �m is the magnetic scalar
potential.  Solving equations (7a) and (7b) for the electric and magnetic
fields yields

Equations (4a) and (8a) give the fields (EA, HA) due to electric sources
while Equations (4b) and (8b) give the fields (EF, HF) due to magnetic
sources.  Note that these radiated fields are obtained by differentiating the
respective vector and scalar potentials. 

The integrals which define the vector and scalar potential can be
found by first taking the curl of both sides of Equations (4a) and (4b): 

According to the vector identity

and Equations (1b) and (2a), we find



Inserting Equations (7a) and (7b) into (10a) and (10b), respectively
gives

We have defined the rotational (curl) properties of the magnetic and
electric vector potentials [Equations (3a) and (3b)] but have not yet defined
the irrotational (divergence) properties.  If we choose

Then, Equations (11a) and (11b) reduce to

The relationship chosen for the vector and scalar potentials defined in
Equations (12a) and (12b) is defined as the Lorentz gauge [other choices
for these relationships are possible].  Equations (13a) and (13b) are defined
as inhomogenous Helmholtz vector wave equations which have solutions
of the form



where r locates the field point (where the field is measured) and r� locates
the source point (where the current is located).  Similar inhomogeneous
Helmholtz scalar wave equations can be found for the electric and
magnetic scalar potentials.

The solutions to the scalar potential equations are



Determination of Radiation Fields Using Potentials - Summary



Notice in the previous set equations for the radiated fields in terms of
potentials that the equations for EA and HF both contain a complex
differentiation involving the gradient and divergence operators.  In order
to avoid this complex differentiation, we may alternatively determine EA

and HF directly from Maxwell’s equations once EF and HA have been
determined using potentials.  From Maxwell’s equations for electric
currents and magnetic currents, we have

In antenna problems, the regions where we want to determine the radiated
fields are away from the sources.  Thus, we may set J = 0 in Equation (1)
to solve for EA and set M = 0 in Equation (2) to solve for HF.  This yields

The total fields by superposition are 

which gives

(1)

(2)



(1)

Antenna Far Fields in Terms of Potentials

As shown previously, the magnetic vector potential and electric
vector potentials are defined as integrals of the (antenna) electric or
magnetic current density.

If we are interested in determining the antenna far fields, then we must
determine the potentials in the far field.  We will find that the integrals
defining the potentials simplify in the far field.  In the far field, the vectors
r and r �r� becomes nearly parallel.



(2)

(3)

(4)

Using the approximation in (1) in the appropriate terms of the potential
integrals yields

If we assume that r >> (r� )max, then the denominator of (2) may be
simplified to give

Note that the r�  term in the numerator complex exponential term in (3)
cannot be neglected since it represents a phase shift term that may still be
significant even in the far field.  The r-dependent terms can be brought
outside the integral since the potential integrals are integrated over the
source (primed) coordinates.  Thus, the far field integrals defining the
potentials become

The potentials have the form of spherical waves as we would expect in the
far field of the antenna.  Also note that the complete r-dependence of the
potentials is given outside the integrals.  The r� term in the potential
integrands can be expressed in terms of whatever coordinate system best
fits the geometry of the source current.  Spherical coordinates should
always be used for the field coordinates in the far field based on the
spherical symmetry of the far fields.

(5)



Rectangular coordinate source

Cylindrical coordinate source

Spherical coordinate source

The results of the far field potential integrations in Equations (4) and (5)
may be written as



(6)

(7)

(8)

(9)

The electric field due to an electric current source (EA) and the magnetic
field due to a magnetic current source (HF) are defined by

If we expand the differential operators in Equations (6) and (7) in spherical
coordinates, given the known r-dependence, we find that the ar-dependent
terms cancel and all of the other terms produced by this differentiation are
of dependence r�2 or lower.  These field contributions are much smaller in
the far field than the contributions from the first terms in Equations (6) and
(7) which vary as  r�1.  Thus, in the far field, EA and HF may be
approximated as  

The corresponding components of the fields (HA and EF) can be found
using the basic plane wave relationship between the electric and magnetic
field in the far field of the antenna.  Since the radiated far field must
behave like a outward propagating spherical wave which looks essentially
like a plane wave as r ��, the far field components of HA and EF are
related to the far field components of EA and HF by



Solving the previous equations for the individual components of  HA and
EF yields

Thus, once the far field potential integral is evaluated, the corresponding
far field can be found using the simple algebraic formulas above (the
differentiation has already been performed).



Duality

Duality - If the equations governing two different phenomena are
identical in mathematical form, then the solutions also take on the same
mathematical form (dual quantities).

Dual Equations

             Electric Sources                                   Magnetic Sources



Dual Quantities

                Electric Sources                          Magnetic Sources



Reciprocity

Consider two sets of sources defined by (Ja , Ma) within the volume
Va and (Jb , Mb) within the volume Vb radiating at the same frequency.  The
sources (Ja , Ma) radiate the fields (Ea , Ha) while the sources (Jb , Mb)
radiate the fields (Eb , Hb).  The sources are assumed to be of finite extent
and the region between the antennas is assumed to be isotropic and linear.
We may write two separate sets of Maxwell’s equations for the two sets of
sources.

If we dot (1a) with Eb and dot (2b) with Ha, we find

Adding Equations (3a) and (3b) yields



The previous equation may be rewritten using the following vector identity.

which gives

If we dot (1b) with Ea and dot (2a) with Hb, and perform the same
operations, then we find

Subtracting (4a) from (4b) gives

If we integrate both sides of Equation (5) throughout all space and apply
the divergence theorem to the left hand side, then

The surface on the left hand side of Equation (6) is a sphere of infinite
radius on which the radiated fields approach zero.  The volume V includes
all space.  Therefore, we may write



Note that the left hand side of the previous integral depends on the “b” set
of sources while the right hand side depends on the “a” set of sources.
Since we have limited the sources to the volumes Va and Vb, we may limit
the volume integrals in (7) to the respective source volumes so that

Equation (8) represents the general form of the reciprocity theorem.  
We may use the reciprocity theorem to analyze a transmitting-

receiving antenna system.  Consider the antenna system shown below.  For
mathematical simplicity, let’s assume that the antennas are perfectly-
conducting, electrically short dipole antennas.

The source integrals in the general 3-D reciprocity theorem of Equation (8)
simplify to line integrals for the case of wire antennas.

Furthermore, the electric field along the perfectly conducting wire is zero
so that the integration can be reduced to the antenna terminals (gaps).



If we further assume that the antenna current is uniform over the
electrically short dipole antennas, then

The line integral of the electric field transmitted by the opposite antenna
over the antenna terminal gives the resulting induced open circuit voltage.

If we write the two port equations for the antenna system, we find

Note that the impedances Zab and Zba have been shown to be equal from the
reciprocity theorem.



Therefore, if we place a current source on antenna a and measure the
response at antenna b, then switch the current source to antenna b and
measure the response at antenna a, we find the same response (magnitude
and phase).  Also, since the transfer impedances (Zab and Zba) are identical,
the transmit and receive patterns of a given antenna are identical.  Thus, we
may measure the pattern of a given antenna in either the transmitting mode
or receiving mode, whichever is more convenient. 


